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LIMITING BEHAVIOR OF THE NORM OF PRODUCTS
OF RANDOM MATRICES AND TWO PROBLEMS OF
GEMAN-HWANG

by
Z, D. Bai and Y. Q, Yin
University of Pittsburgh
ABSTRACT

In this paper, the authors proved that

Tim [[(WvA)K]] < (14Kk)oX, a.s.
N

where W: n x n is a square random matrix with i.i.d. entries and 02 is the

variance of the entries of W. In proving the result, the authors assumed
the existance of fourth monent of the entries of W.

Key words and Phrases: Spectral radius, lTimiting behavior, random matrices.
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/ 1. INTRODUCTION
Y,

In the theory of large random matrices, how to dominate the norm
of a random matrix is a very important problem. .This is the reason why
many authors are interested in this problem. For interesting works,
see Geman (1980), Jonsson (1983), Silverstein (1984) and Yin-Bai-
Krishnaiah (1984). 1In these papers, they consider the norm of a sample
covariance matrix, with different moment requirements. The newest

result of Yin-Bai-Krishnaiah requires only the existence of 4th moment.
a
In this paper , we considersa different type of random matrices,
/' L op e
namely:ﬂk; i.e. a power of a square random matrix with iid entries.

The first result in this paper {(Theorem2:1) is =~ - I

L o~Ad

k
m||(1>
e /n

. b"‘/"l
o

j_(1+k)ok, a.s. fﬁ is the size of W),
e

! here gz is the variance of the entries of W. We assume only the

existence of the 4-th moment of the entries of W. From this result it

S

is easy to show that the spectral radius of W/{; is not greater than o
with probability 1. This result is known only for 1iid N(O,éz) case,
s 5.,

In proving the above result, a new kind of graphs has CO’;e
discussed carefully, {533: and the truncation metﬁod used in Yin-Bai-
Krishnaiah (1984) is also important here. .

As applications of the above result, we have solved two open

problems announced in the paper Geman-Hwang (1982). The solutions

are in §5, §6 and §7.

Jiev ey S L o . /,
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2. LIMITING BEHAVIOR OF MATRIX PRODUCT NORM

In Sections 2-4, we will prove the following theorems.

Theorem 2.1. Let {wi i=1,2,...,3 = 1,2,...) be iid random

j:

variables, and Wn be the nx n matrix (wij) i,j = 1,2,...,n. Suppose
2 2

Ew11-0,2w11=0,£’w11<n. (2.1)

Then, for any positive integer k, we have

w
1im sup || C =2¥]] < (k#1)c* a.s. (2.2)
el /n

Here ||A|| denotes the operator norm of the matrix A.
Denote by Ai(A), i=1,2,...,n, the n eigenvaluesof the nxn
matrix A. We have

Theorem 2.2. Under the same conditions as in Theorem 2.1, we have

¥n
lim sup max [x,( =) | <0 a.s.
e 1<i<n n

Theorem 2.2 can be easily deduced from Theorem 2.1 as follows:

For any integer k > 1, by Theorem 2.1,

Wn Wk l/k
lim sup max l)\i( —=)| = 1im sup max Iki[( —) 1]
ne  1<i<n n N0 l<i<n /o
W, k[(l/k
< lim sup ‘( =) H < (k+1)1/k0. a.s.
e /n

Letting k + © we get Theorem 2.2.
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3. SOME LEMMAS

LA PAPAIA ™

At first we state the following lemma which can be found in Yin~

Bai-Krishnaiah (1984).

« s g e 8 s

Truncation Lemma. Let r be a number in the interval [%,2],

{wij: i,j = 1,2,...} be a set of iid random variables with E vt

Elwlllzlr < @, For each n, let Wn denote the px n matrix whose

-0'

s s
P

here p = p(n) satisfies p/n — y ¢ (0,»), as

r
Ll p s

(i,j)-entry is wij’

n -+,
Then there exists a sequence of positive numbers § = Gn such that

1, 6§+ 0, as n+» =,

2. P(Wn # ﬁn’ i.0.) = 0; here ﬁn is the px n matrix, with the (i,j) entry

L wijn = wij l{lwijl< snf}?

and the convergence speed of § to zero can be slower than any pre-
assigned speed.

In order to prove Theorem 2.1, we need some combinatorics., Let
%j 11’12""'12km be a sequence,we define a multigraph T'(k,m; 11""’12km)
‘ as follows:

1. The vertices of this graph are il’iZ""’izkm' Some of them
may be equal.
2. There are 2km edges €1s€)scnesly o The ends of e, are 1a and
(

ia+1 12km+1 = 11). Any two of these edges are different even when

they have the same end sets. Sometimes we write iaia+1 instead of e

AR

B

3. To each edge e there corresponds a number dir(ea), called

"% the direction of e_, such that

§-+1, if [(a-1)/k] is even,

L"l’ if [(a-1)/k] 1is odd.

dir (ea) =
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Two edges e = 1 are said to be coincident, if either

a aia+1’ € © ibib+1

i and dit(ea) -dir(eb), or ia= i 1a+1. ib and dir(ea)--dir(eb).

a” v a1 "l b+1®
A chainisasubgraph with vertex set {ia'ia+1""’ib} (1 < a <b < 2mk+l)
and edge set {ea,ea+1,...,eb_l}. We will denote such a chain by
iaia+l coa ib.
In the graph T(k,m; 11’12""’12km)’ we classify the edges as
follows.
1. An edge 13-1
The set of all innovations will be denoted by I.

i 1is called an innovation if i is new, i.e. 1 #4i,,...,i #1 .
a a . a "1 a’ ‘a-

2. Let S be the set of all edges ia-lia which coincides with an

innovation, and for any b < a, 1b—lib does not coincide with that

innovation.

3. All other edges consist a set called T.

it 1aiane

(1) b < a;

ib1b+1 are two edges satisfying the following properties:

(2) ii, 1s single up to i_, i.e. it does not coincide with any

edge of the chain 1112 ...ia.
= ia and dir(ibi - 1

), or 1b+1 a

(3) Either i ) = dir(it

b b+l a+l

and dir(ib1b+1) = —dir(ia,ia*l), then we say that 1aia+ is

1

coincidable with ibib+1'

An edge of S is called singular if it is coincidable with just

one innovation.

An edge of S is called regular if it is not singular, i.e. it is

coincidable with more than one edge.

The proofs of Lemma 3.1, 3.2, 3.3 below are similar to the proofs

of Lemma 3.1, 3.2, 3.3 in Yin-Bai-Krishnaiah (1984).

Lemma 3.1, If in the chain 1aia+l "'ib' iaia+1 is single up to

1b and ib has been visited by 1112 "'ia then iaia+1 ...ib contains

an edge of T.
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Lemma 3.2. Let t be the number of equivalence classes of T under
the equivalence relation "coincidence". Then if iai p 1s a regular

edge of S, the number of edges with which iaia+1 is coincidable is not

greater than t + 1.

Lemma 3.3. The number of regular edges of S is not greater than

twice the number of edges in T.
The chains I..la ili ikik+l’ LZ- ik+1j‘k+2 12k+1”"’

L e 1

2m:’i(2m-1)k+1 1(2m-1)k+2 2 are called segments.

Lemma 3.4. Let % be the number of innovations. Then the number
of different ways to appoint the 2km edges to be of I,or S,or T, does
not exceed ( ) (k+1)2km—2£+2m.

Proof. Since the number of innovations are £, the numbers of S
and T must be 2 and 2km - 2%, respectively. So there are ( ) different
ways to select 2km - 2 edges from the 2km edges which are appointed
to be of T, and the others to be of I or of S.

Now consider a segment Lc' Note that every edge in the same
segment has the same direction. Suppose that Lc contains v, edges of T.
Then Lc is split by these L T~-edges into at most L + 1 subchains

consisting of consecutive edges of I (JS. Let the lengths of these

subchainsg be vl’VZ""’vuc+1

, respectively (if there are less than
Mo + 1 such chains, then some v, at the rear part of this list are
zero). Consider the i-th subchain with vy edges. It is evident that

if some edge in this chain is of I, then the next one (if any) must be

of 1 because of the same direction of them. So there are only vy + 1

possible appointments for this chain, namely, III ... I, SII ... I,

SST ... 1, 88S ... SI, SSS ... S. So for the whole segment Lc’ there
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i=1
edges to be of I or of 5.2

2m uc+1 c
most T (k+1) = (k+1)
c=1

the 2¢ non-~T edge

are at most T (vi+1) < (k+1)

+
netl ways to appoint the k - v, non-T

é?hus, for the whole graph, there are at

L u tem 2¥m-2242m

= (kt+l) ways to appoint

s to be of 1 or of S.




4. PROOF OF THEOREM 2.1

Now we apply the truncation lemma for r = % and p(n) = n. We

need only to prove

W, k
lim sup || =) || j_(k+1)ck. a.s. (4.1)
e /o

a ~ ~

Define wijn = wijn - E wijn and define Wn= (w

We shall prove that for any k > 1

ijn). 1,j=1,2,...,n.

-~

lim sup |[C 2| < (D)o® aus. (4.2)
rybe /

If (4.2) holds for any k > 1, since

Wk Wik Wy ok Wyok
HC=BY M~ RO < HO20% - 259
I~ . R~ m’
k-1 1% 4] W W oo
< TOMCRDH IR - D) 2Rk
2=0 /n /a v/ /n
and
n . le I 1,1,...,1
! w__n___EB_H . 11n 1,1,...,1 = [Ew, l—0
/maM o/ /n 1,1,...,1
by (4.2) we obtain
Wo k W, k
lim sup ||]( £ [ - [1¢ =) [
e /; I Jl;
k-1 ﬁ [} —o
< 1lim sup 20 H(;—‘_‘_) e vy, | Gy 4.3
n-s>eo = n

from which and by induction we can deduce (4.1). Hence to prove
Theorem 2.1, we need only to prove (4.2).
For saving notations, we can assume that wn is an nxn matrix with

iid random entries w,,, such that

i3
/a 2 ¢ 4
Ew, =0, |w;| <6/, E w1 S 1. (4.4)
P"‘
[
.
D.'.
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D
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Here, without any loss, we suppose ¢ = 1, and instead of 26 we write §.

Under the condition (4.4), it is easy to see that

oY (MT)’L'Z, for £ > 2,
Eilw < _ (4.5)
1 asvm)*3,  for 1> 3.

It is enough to show that for any number z > (1+k)

T U125 5 2) <o (4.6
/o
n=1 n
But since
Wy k2@ Wo k. T W k..m
ll(—;—)ll S O (L LC=071 (=)

W W
ceel( 2y kT ym
e

a1

For any sequence m = m(n) of positive ‘integers,

I o®dlG A > 2

n=]

*® m
I oecer@w Ty > 220 o™
n=1 n n

S

® _ » m
< 3 2T ek wdT) ,
- n=1 un

And we need only to show that for some positive integers m = m(n),

® - - m
I 272 g™ g e < o 4.7)
n n
n=1
We have
E =E :r(wk(wk)r)m ) E(wi Y Yy g )(wi N v,y
n non 112 2% Rkl f2til Mee3tke2
cee W ) vee (W ces W ).
Loxertok L 2m-1)k+2  (2m-1) k1 L mkt1 Y 2mk

Here, 11'12"°"12mk run over {1,2,...,n} and ika+l = 11. For each

11’12""’12mk we can define a graph I'(k,m) as in Section 3.
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Now we estimate the expectation

m-1 k
M=E 1 m (w

non i vy w w ).
a=0 b=1 2ak+b “2ak+b+1l

L2a+1)kib+l  1(2a+1) kb

where(i,,i ,...,i,, ) forms a canonical graph(i.e. 1aimax(i

)

2" 2km A

Suppose that in the graph I‘(k,m;il,iz,...,i2km

1. There are ¢ innovations

2. There are u innovations which coincide with some T-edges, and
the number of T-edges which coincide with the i-th innovation of this
kind is n., i=1,2,...,u.

3. There are t equivalence classes of T-edges split by the
relation "being coincident".

4, These classes in 3 which do not contain any innovation

have Wy yMyse e, edges respectively. (mill 2, 1 =1,2,...,t-u).

t-u
It is easy to see that

u t-p
_ 2 .2-u ni+2 mj
M= (E "11) 'n E w, .n Ewy -~
i=1 i=1
and
u t-u
2(2-u) + )} (n#2) + ] m, = 2mk.
i=1 je1 3
So by (4.4) and (4.5), we obtain
IMI -<- d}.l (Sg)zm—ZQ-t i mt (6/-‘;)2km-22,-t (4-8)

for n, hence for m, large enough.

Now we estimate the sum En of all expectations whose graphs
r(k,m) do not have single edges.

Let ¢ denote the number of innovations of the graph I'(k,m). Then

there are £ S-edges and 2km-2% T-edges. For a fixed canonical graph
+1

different

r(k,m) with ¢ innovations, there are n! / (n-¢-1)! < n

graphs which correspond to this canonical graph.

e T e e e e

A _P¥a, and 1,=1).
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By Lemma 3.4, there are at most (221:n) (k+1)2km—22+2m different
ways to appoint the 2km edges to be of I or of S or of T.

Let t denote the number of noncoincident T-edges. Because our
graphs do not have single throughout edges, we have 2 < mk and
1<t < 2km-2¢ if £ < mk-1l. |

Next we bound the number of different ways to appoint each edge in
a canonical graph with given positions of the £ innovations, 2 S-edges
and 2km-22 T-edges and with t different T-edges. Since each edge is an
element of the left-upper 2kmx 2km submatrix of W so there are at

2
((ka) ) tka -2L different ways to appoint the t different T-edges

most
into their 2km-2% different positioms.

Each innovation in & canonical graph is uniquely determined by the edges before it,

and so iseach singular S edge. By Lemma 3.2 and 3.3, there are at most

(t+1)4km-“' different ways to appoint the regular edges of S to their

positions. Here we should note that whether an S-edge is singular or
regular is determined by all the edges before it.

From the above arguments and (4.8), we get
wk
IE I < z (22?)(k+1)2km-2£+2m nl+1

2im=28 2kn)2) 2km-22
t t
n 1=l t=1

x (t+1)l'km-“' ot (sva )ka-Z!L-t
mk - - s
a1 2im-2042m 2820 (21m) 3 (ra1) ORBOR Zhm-2t (6 1y F,
<n ) A 20 KBy (k1) )
0 =1 t=1
here Z A =1, conveniented for saving notationms.
t=1
By the elementary inequality
t
aS(e+)? < (- lo‘; —P for (0<a<1,b>0
we get
g NI T T N T e S e e e s e
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11
mk
IE I < nkm+1 2 (ka) (k+l)2km-242+2m(2km) ﬂm_S___
n' ~ 22
2=1 1o §v/n
8 (Zkm) 3

If we select m = m(n) = A(n) log n such that

1. A(n) » =

16, .

2. A(n) 61
then

6km61/6

§vn
log ?EEET§~

— 0, (n » =),

Thus we obtain for large n

mk
1 &M (e (un®®

|E| <n
n =1

km+

<n 2 Q+ (k+1)61/2 2k

) (k+1) 2™

Since z > (1+k) and § + 0, we have

E z-2m n-kmlEn |
n=1

cc I @’ uiy/zp™

n=1

m
n <w

1

<C

LR B ]

n

where 0 < n < 1 is a constant. Here the last series converges because

m/log n - », The proof is finished.
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5. TWO PROBLEMS OF GEMAN-HWANG

In Geman-Hwang (1982), they suggested the following system of
linear equations with unknown nx 1 vector Xn
1
X =1 +—WX (5.1)
n n o nn
where W is ann x n matrix whose (1i,j)-entry is wij and W = (wﬁ:
i,j = 1,2,...} is an infinite matrix of iid random variables, and L
is the nx 1 vector (1,1,...,1)T

T
If X = (xnl....,xnn) , then for any integer m > 1, Geman and Hwang

proved that as n + =,

2
g
(X seeeyX ) —_— N(l —= I ) weakly, (5.2)
nl’ n2 ’ ’ 1_02 m
under the conditions
2 2 1
1, Ewn 0,0<Ewu-a <Z’

2. E'“]_‘;l < n%? for any integer w > 1; a is a positive constant,
Geman and Hwang pointed out that the computer simulations support

(5.2) even in the case of uniform distribution on [-1,1], where

N
3.

We will prove that (5.2) is true even when 02 < 1 and Elwlil < ®,

Theorem 5.1. Let Xn be the solution of (5.1) whenever (I - L Wn)
n

is nonsingular, otherwise define X, = 0. Then (5.2) holds when

2 2 4
Ew, " 9, Ewll-o <1 and Elw11| < =,

Ceman and Hwang (1982) suggested a system of differential equations

: 1
xn(t:) = axn(c) + 7_‘-‘- wnxn(t), xn(O) - 1n. (5.3)

They proved that for any integer m > 1, real T > 0, an(.),...,xnm(.)
(the first m components of the vector xn(.), the solution of (5.3))

tend to m iid Gaussian processes weakly,as n + = on [0,T]. Each of

these m processes has mean u(t) = eat and covariance function




~ gk A A e

68 L L8,

s Ve e Ve T
PRI P SR e

NG
a2

Mg

YAl N e AT

PRI A N oA A C L L AL /N PR WL R N AP PR 4 L A L N e T S~ ] ..

13

ates) ¥ (es)

c(t,s) = 7 .
k=1 (k!)

They supposed among others the following moment requirement

B

Elwllln <a " for all n > 2, and some B > 0.

In the same paper, they conjectured that the analogous theorem
should hold for the equation
X (6) = aX (6) + 22 x (6) + 1, X (0) = 1 (5.4)
n n ~ 'n n’®‘n n’ :

We will prove

2 4
Theorem 5.2. Suppose E vip T 0, E Vi1 <t 1, and E Wi <= Let

Xn(c) be the solution of

: 1
Xn(t) = axn(t) +-7§ ann(t) + 8 ln’ Xn(O) = ln' (5.5)

Then for any integer m > 1, real T > O, an(t)....,xnm(t) tend to m 1id
Gaussian processes weakly on {0,T] as n + =, The mean of these

processes is
t .
u(e) = e“t + 8 J % ds = St o+ s-(eat-l), (5.6)
0

the covariance function is

® t 8
C(t,s) = J 1 7 (tkeat + 8 I ukeuu du)(skems +8 I \1ket"u du).
k=1 (k!) 0 0
(5.7)

Remark. When B8 = 0, Theorem 5.2 reduces to an extension of Geman-

Hwang theorem. When 8 = 1, Theorem 5.2 includes a proof of Geman-

Hwang's conjecture.
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6. PROOF OF THEOREM 5.1

By the Truncation Lemﬁa; we can assume that the entries of wn are
bounded by /;3, here § = Gn + 0 arbitrarily slow. We suppose 6§ is
defined as in the proof of Theorem 2.1.

Write Y = X - ln’ A= wn/JE . (5.1) is equivalent to

(In - A)Y = Aln.

k-1
Multiply both sides by z Ai, we get
i=0
zn (1-A>Y-2A1. (6.1)

i=1
We need the following lemma.
Lemma 6.1. Suppose
1. {wij; i,5 = 1,2,...} are iid random variables; and W is the

matrix (w,.; 1 < i, jJ < n);

iyf t= IS .

2 2 4
2. E Wi, - 0, E i ™ ¢, E Vi1 < ™,

1%)
Then if a(i,k,n) denotes the i-th component of the vector ( 2

n
for any distinct ordered pairs (il,kl)....,(im,km), as n + =,

T w
(a(il.kl,n),...,q(im,kh,n)) — Nm(O,Am),

where Am = diag(GZkl,...,Gka).
The proof of Lemma 6.1 is almost the same as the proof in the
Appendix of Geman-Hwang (1982) and is therefore omitted here.

By Truncation Lemma and Lemma 6.1, it is not difficult to see that

f e

w
(ImO)Zn — Nm(O, &

Im)’ as n + o, (6.2)

Here Im is the mxm identity matrix. Also, if (zn)i is the i-th
k

component of Z.» E(zn)i — ] g%t as n + », Here the reader has to
i=1

note that we have truncated the entries of Hn at /ns.
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In order to prove Theorem 5.1, we notice that
Xn= ln+Y=1n+zn+AkY.
Then, if t = (tl,...,tm)T, i=7/-1,
) - - ] o
LT (X -1) _ -1/2t't ) l

j-1
it'(ImO)Zn!

|E

Lt (I O(X -1) _

E E e

L k k
+ |E 1t (Imo)zn- exp{-% t't ) 02j}|+leq.\{'!i t'e ] OZJ}-exli ‘%t'tjzl }
§=1 3=1
= al + a2 + 83,

As n*> >, a, > 0, by (6.2).

Now we estimate a,. We have for any ¢ > 0

< Ele“'(lmo)“k" -1 <2 P(H(ImO)AyYH > €) + ¢(e)

it
t'x
Here ¢(c) = sup |e ~1] > 0as e~ 0.
[1x]]< €
1/k
We consider only those k, for which (1l+k) o<1,

/k

Let A =4 = {weQ: HAkH < nk}, where (1+0% 6 < n <1,

yK
n is fixed. Evidently P(A) + 1 as n + = by Theorem 2.1. Thus

P L@ 04| 2 &) < pC [ 08| 2 e, (18] < a® + 2 A7) 2 05

_<_—12—E||(1 0)a%y| |? 1, + p(||a¥|] > %)
€ m -
TR W TS JIOR (6.3)
en
since the components of AkY 1A have the same distribution.

We have

AH = Ak(I - Ak)Y + AkAPY =- Aan + Ak(AkY),




AR T A S AR Y % 4% ) 'e 4w gen )
A A ) RN

1o

SO

k
[Ta% 0] < 1A Lzt + 11451 118501,

and

k
uhn o —HAl gy .

n
T k| kllznll 1, (6.8

By (6.3) and (6.4).

m nk 2
(]| 1 0)AIS(H >€) < (——) E[{z_[[°+1-P).
m - 2 k n
en 1-n
Let n » =, we get
—_ k 2 k
lim P(H(ImO)AvYII > €) 5-17 (= %) ) o2,
e e 1-n j=1
So -
1im |E e it (150) (Xg - 1n) -exp{-% t't jgl czj}|f_ lim a, + a,
e nre
k 2 k ;
i"l_z Z o 4+ ¢(erlexpl{ ~% t't jz Zj}-acp{ b5 th: ilczj}[
l-n i=1 O
Letting k + », and then € + 0, we see that the left hand side
tends to zero. ‘
T e R S, O 0V i S e s
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(N
s a0

7. PROOF OF THEOREM 5.2

(]
a

It is easy to verify that

y w W t
“ X (6) = § il—, (2 1 (c%e®t + 8 I s¥%% ds)  (7.1)
k=0~ /n 0

X is the solution to (5.5).

Theorem 5.2 is a consequence of the following lemma.
- Lemma 7.1. Let {wij: i,j =1,2,...} be a family of iid random

< =  and w o= (w

.. variables with E w,. = 0, E w i = 1 and E wli

11

- l<i<n,1l<1ic<n).

1 ij°’

~ Let {gk(.), k = 0,1,...} be a sequence of continuous functions

- satisfying

= Kk

) iT sup lgk(t)| < @, (7.2)
k=0 7" 0<t<T

here r > 2, T > 0 are positive consgtants.

W ..' .l' ." .

o
Dl W

Then for any integer m > 1, as n = « the stochastic process

'.': (I1_0) }: L ( EB)k 1 g, (t), t € [0,T], tends to an m-dimensional
m? Lo ¥ U2 Tn B

Gaussian process with iid components, each with mean go(t) and
o0

covariance function c(t,s) = Z (ihéz gk(t) gk(s).
k=1

- Proof. Let

T % 1 ,Wnk
z (t) = (2 (6),...,2 (£)) = kzl wr ¢ /_{{) 1 g, (t).

= We prove that the sequence {(an(.),...,an(.)), n=1,2,...} of

- stochastic processes is tight in Cm[0,t]. It is easy to see that we

IR

need only to show that {Zni(')’ n=1,2,...} is tight in C[0,T], 1 < i < u.

< Let & = {w e Q: ||!E1| (w) < r}. By Theorem 2.1, P(An) + 1.
R "
3

NS
e . .
LI T AL DAL

)
+
-l
-
B
-

A R A A

o o
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Let
p (8) = sup lg, (t) - g ()],
|t-s| <6
t,s ¢ (0,T])
W W
a(i,k,n) = {( -“-)k ln}i = the i-th component of ( 2 )k 1.
n n n
We have
bt o (68)
sup Izni(t) - Zni(s)l < z |a(1,k,n)| B
le-s} < & k=1 k!
t,s € IO'T]
hence

1im lim P( sup Izni(t) - Zni(s)l > €)

5+0 t-s] < 6
t,s8 €T
.o © Py (8)
< lim lim P( ) |a(i,k,n)| —— > E€)
§+0 m= kel k!
1 ® ok(é)
<lmlim [T E 1, [a(i,k,n)| +(1-P@)) ]
6+0 mwr k=1 'n k!
—_ 1 2 CMC)
= 1lim lim = E 1 [a(i,k,m)].
6+0 e © k=l k! n

It is easy to see that a(i,k,n) 1A yeoo,a(n,k,n) 1A , i=1,2,...,n, tave an

n n
jdentical distribution. Therefore
E 1l |a(i,k,n)} 5_51/2 1, lu(i,k,n)[z
n n
1 Wn k 2 ,1/2
< (=1 ([lc=r ]
n An /g n
Wnoi2k ,1/2 0k
2 ey, 12PN <N
% n /;
b o,
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Thus, the tightness of the family {Zni(.); n=1,2,...1 of

stochastic processes is established.

Finally we show that for any positive integer & and

tl""’tﬂ, ¢ [0,T]), as n > =
g 1§ g
E exp{i AL Z ()} — expl -= A .a c(t,,t
v=]1 j-l nv j , 2 v=] j-l q-l \)j vq j q
here i = /-1 and {lvj} are real numbers.
Let
® w g, (t)
()= I (RN =
k=p+l /n k!
® g, (t)
= Z a(v,k,n) k , V=1 ...,n.
k=p+l k!
Let g, = sup gk(t). Then for any ¢ > 0,
te{0,T]
lim Iim P(le] ()] > €) < 1im Iim = ! o E 1, la(v,k,n)|
e e 3 pr™ N k=p+1 n
l — s rk
<< lm ] y78 =0 (7.3)
© pre keptl
On the other hand, by (7.2)
—_ & o o g, 2
lim| } ! 5 g (£)g, (¢ ) < 1im [ ) ——‘i} = 0. (7.4)
pro kep+l (k!) J T~ preo kmp+l (k!)
We have
m & ® g (t,)
Eexpiz ZA Ea(v. k, n)-—kk—,l-}
vel j=1 Y3 k=1 '
L}
- E exp{- = )\)«c(t.t)l
2 v=] j=1 qzl Vvt
m 2 o g, (t,)
< |E exp{i } {x Za(v,k,n)—k—k-!dj—i
vel =1 Vi ka1
m 2 P 8, (ts)
-Eexpii Exu zﬂ(v-k-“)"ijj— I
val j=1 VI kel
"""" RRORRANENSINN
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[}
2
<
]
|
<
N r~38
=
[
L]
o
—
[N
o~
—
>
S
Q
x’\
Lol D)
>4
|
~
Appmgrnst

oy '
exp{- = x c(e,, t )}|
22\)-1 =1 q-l \)q i LY
=3 +a +a

1 2 3

By (7.3) 1im 1im a, = 0. By Lemma 6.1, lim a
pro e nmre

= 0, And

N

1 ¢3¢ ¢ P12
exp -~ 3 2 2 2 AL z § g(tj)g(tq)}
v=l j=l.q=l =1\%"

- expl—-li 'f % %x A {l[kl} JCAEICH )u

1 - exp{-% ? % % Avi ei [%}23(:1)3(%)}!

val =1 gl 3 V9 yep4l

a. =

<

x

b 81«)2
ot 1 4 Al e

by (7.4). We finish the proof.
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